Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210136

RESUMO

In this research, CuFe2O4 nanoparticles were synthesized by co-precipitation methods and modified by coating with thiophene for removal of Hg(II) ions from aqueous solution. CuFe2O4 nanoparticles, with and without thiophene, were characterized by x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), energy dispersive x-ray (EDX), high-resolution transmission electron microscopy (HRTEM) and Brunauer-Emmett-Teller (BET). Contact time, adsorbent dose, solution pH, adsorption kinetics, adsorption isotherm and recyclability were studied. The maximum adsorption capacity towards Hg2+ ions was 7.53 and 208.77 mg/g for CuFe2O4 and CuFe2O4@Polythiophene composite, respectively. Modification of CuFe2O4 nanoparticles with thiophene revealed an enhanced adsorption towards Hg2+ removal more than CuFe2O4 nanoparticles. The promising adsorption performance of Hg2+ ions by CuFe2O4@Polythiophene composite generates from soft acid-soft base strong interaction between sulfur group of thiophene and Hg(II) ions. Furthermore, CuFe2O4@Polythiophene composite has both high stability and reusability due to its removal efficiency, has no significant decrease after five adsorption-desorption cycles and can be easily removed from aqueous solution by external magnetic field after adsorption experiments took place. Therefore, CuFe2O4@Polythiophene composite is applicable for removal Hg(II) ions from aqueous solution and may be suitable for removal other heavy metals.

2.
Biomolecules ; 10(2)2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041305

RESUMO

Potentiometric sensors have a great influence on the determination of most various compounds in their matrices. Therefore, efficient and new sensors were introduced to measure sodium Deoxycholate (NaDC) as a bile acid salt. These sensors are based on NaDC imprinted polymer (MIP) as sensory element. The MIP beads were synthesized using thermal polymerization pathway, in which acrylamide (AAm), ethylene glycol dimethacrylate (EGDMA), NaDC, and benzoyl peroxide (BPO) were used as the functional monomer, cross-linker, template, and initiator, respectively. The proposed sensors were fabricated using a coated screen-printed platform and the sensing membrane was modified by single-walled carbon nanotubes (SWCNTs) as an ion-to-electron transducer. The sensors exhibited high sensitivity that reached 4.7 × 10-5 M of near-Nernestian slope (-60.1 ± 0.9 mV/decade, r2 = 0.999 (n= 5)). In addition, the sensors revealed high selectivity, long lifetime, high potential stability, and conductivity that ensure reproducible and accurate results over a long time. MIP characterization was performed using Fourier Transform-Infrared (FT-IR) and a scanning electron microscope (SEM). Regarding the interaction of NaDC with serum albumin (SA), albumin is determined in human serum samples as human serum albumin (HSA), which was collected from different volunteers of different ages and gender.


Assuntos
Ácido Desoxicólico/química , Potenciometria/métodos , Eletrodos , Humanos , Limite de Detecção , Metacrilatos/química , Nanotubos de Carbono/química , Polímeros/química , Potenciometria/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
3.
Polymers (Basel) ; 11(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623171

RESUMO

A new simple potentiometric sensor is developed and presented for sensitive and selective monitoring of dimethylamine (DMA). The sensor incorporates a molecularly imprinted polymer, with a pre-defined specific cavity suitable to accommodate DMA. The molecularly imprinted polymer (MIP) particles were dispersed in an aplasticized poly(vinyl chloride) matrix. The MIP is synthesized by using a template molecule (DMA), a functional monomer (acrylamide, AM), cross-linker (ethylene glycol dimethacrylate, EGDMA) and initiating reagent (benzoylperoxide, BPO). Using Trizma buffer solution (5 mmol L-1, pH 7.1), the sensor exhibits a rapid, stable and linear response for 1.0 × 10-5 to 1.0 × 10-2 mol L-1 DMA+ with a calibration slope of 51.3 ± 0.3 mV decade-1, and a detection limit of 4.6 × 10-6 mol L-1 (0.37 µg mL-1). The electrode exhibited a short response time (10 s) and stable potential readings (± 0.5 mV) for more than 2 months. Potentiometric selectivity measurements of the sensor reveal negligible interferences from most common aliphatic and aromatic amines. High concentration levels (100-fold excess) of many inorganic cations do not interfere. The sensor is successfully used for quantification of low levels of DMA down to 0.5 µg mL-1. Verification of the presented method was carried out after measuring the detection limit, working linearity range, ruggedness of the method, accuracy, precision, repeatability and reproducibility. Under flow-through conditions, the proposed sensor in its tubular form is prepared and introduced in a two-channel flow injection setup for hydrodynamic determination of DMA. The sampling rate is 50-55 samples h-1. The sensor is used to determine DMA in different soil samples with an accuracy range of 97.0-102.8%.

4.
Polymers (Basel) ; 11(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546880

RESUMO

Screen-printed ion-selective electrodes were designed and characterized for the assessment of cyromazine (CYR) pesticide. A novel approach is to design tailor-made specific recognition sites in polymeric membranes using molecularly imprinted polymers for cyromazine (CR) determination (sensor I). Another sensor (sensor II) is the plasticized PVC membrane incorporating cyromazine/tetraphenyl borate ion association complex. The charge-transfer resistance and water layer reached its minimal by incorporating Polyaniline (PANI) solid-contact ISE. The designed electrodes demonstrated Nernstain response over a linear range 1.0 × 10-2-5.2 × 10-6 and 1.0 × 10-2-5.7 × 10-5 M with a detection limit 2.2 × 10-6 and 8.1 × 10-6 M for sensors I and II, respectively. The obtained slopes were 28.1 ± 2.1 (r2 = 0.9999) and 36.4 ± 1.6 (r2 = 0.9991) mV/decade, respectively. The results showed that the proposed electrodes have a fast and stable response, good reproducibility, and applicability for direct measurement of CYR content in commercial pesticide preparations and soil samples sprayed with CYR pesticide. The results obtained from the proposed method are fairly in accordance with those using the standard official method.

5.
Materials (Basel) ; 12(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510026

RESUMO

A novel single-piece all-solid-state ion-selective electrode (SC/ISE) based on carbon-screen printed is introduced. Polyaniline (PANI) is dissolved in a membrane cocktail that contains the same components used for making a conventional ion-selective polyvinyl chloride (PVC) matrix membrane. The membrane, having the PANI, is directly drop-casted on a carbon substrate (screen-printed-carbon electrode). PANI was added to act as an intermediary between the substrate and the membrane for the charge transfer process. Under non-equilibrium sensing mechanism, the sensors revealed high sensitivity towards 2,4-dichlorophenol (DCP) over the linearity range 0.47 to 13 µM and a detection limit 0.13 µm. The selectivity was measured by the modified separate solution method (MSSM) and showed good selectivity towards 2,4-DCP over the most commonly studied ions. All measurements were done in 30 mm Tris buffer solution at a pH 5.0. Using constant-current chronopotentiometry, the potential drift for the proposed electrodes was checked. Improvement in the potential stability of the SPE was observed after the addition of PANI in the sensing membrane as compared to the corresponding coated-wire electrode (membrane without PANI). The applicability of the sensor has been checked by measuring 2,4-DCP in different water samples and the results were compared with the standard HPLC method.

6.
Polymers (Basel) ; 11(8)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349581

RESUMO

Molecularly imprinted polymer (MIP) receptors have been synthesized, characterized, and applied as new selective receptors in solid-contact ion selective electrodes (ISEs) towards non-dissociated 3,5-dihydroxytoluene (orcinol). Two monomers, namely methacrylic acid (MAA) and acrylamide (AA), were used in the preparation of MIP receptors. Graphene (Gr) was used as the solid contact material between the sensing membrane and the electrical contact substrate. Based on non-equilibrium sensing mechanism, the proposed sensors reveal observably enhanced detection sensitivity towards orcinol with detection limits 1.7 × 10-5 and 3.3 × 10-6 M for sensors based on MIP/MAA and MIP/AA, respectively. The selectivity coefficients measured by the modified separate solution method (MSSM) for the proposed sensors showed good selectivity towards orcinol over most common other phenols and inorganic anions. All measurements were made in the presence of 30 mM phosphate buffer solution (PBS) with a pH of 7.0. Potential stability for the proposed sensors was tested by constant-current chronopotentiometry. No water films were formed between the sensing membrane and the electron conductor substrate. The applicability of MIP/MAA incorporated ISE has been checked by recovery test of orcinol in the presence of soil matrix and by standard addition method.

7.
Sensors (Basel) ; 19(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31208022

RESUMO

Herein, we present reliable, robust, stable, and cost-effective solid-contact ion-selective electrodes (ISEs) for perchlorate determination. Single-walled carbon nanotubes (SWCNTs) were used as solid-contact material and indium (III) 5, 10, 15, 20-(tetraphenyl) porphyrin chloride (InIII-porph) as an ion carrier. The sensor exhibited an improved sensitivity towards ClO4- ions with anionic slope of -56.0 ± 1.1 (R2 = 0.9998) mV/decade over a linear range 1.07 × 10-6 - 1.0 × 10-2 M and detection limit of 1.8 × 10-7 M. The short-term potential stability and the double-layer capacitance were measured by chronopotentiometric and electrochemical impedance spectroscopy (EIS) measurements, respectively. The sensor is used for ClO4- determination in fireworks and propellant powders. The results fairly agree with data obtained by ion chromatography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...